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Abstract
This paper presents an iterative method for numerically solving the secular
equation obtained by Fikioris and Waterman for the effective wave number of
the coherent acoustic field propagating in a medium with a random distribution
of identical spherical scatterers. The method works both for the original
equation derived by Fikioris and Waterman and for its generalization to the
case of an arbitrary two-point correlation function in the positions of any two
scatterers. An explicit solution up to second order in the density of scatterers
is also obtained. In the point scatterer limit this solution is identical to that
obtained by Lloyd and Berry which is considered to be the correct result for the
effective wave number to second order in the density of scatterers in the point
scatterer limit.

PACS numbers: 43.20.Fn, 43.20.Hq, 43.30.Ft

1. Introduction

Fikioris and Waterman in [1] followed up the work of Waterman and Truell in [2] by
incorporating the requirement of non-superposition of scatterers into the problem of the
transmission and reflection of an acoustic plane wave normally incident upon a half-space
containing randomly distributed identical spheres. These authors obtained an integral equation
for the coherent field by a statistical assumption, which is similar to the quasi-crystalline
approximation (QCA, see [3]). From this equation, these authors derive a secular equation
for the effective wave number in the composite medium formed by the randomly distributed
scatterers. As the QCA is known to include all double-scattering processes as shown by
Henyey in [4] for the case of the Foldy approximation (which is analogous to the QCA, see
[5]) and since the Lloyd and Berry [6] wave number was obtained from a multiple scattering
expansion that explicitly included all the double scattering processes one would expect, on
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consistency grounds, that the Lloyd–Berry wave number [6] should be obtainable from the
Fikioris–Waterman secular equation ([1]). This is indeed the case as will be shown in this
paper. The Lloyd–Berry effective wave number contains the first three terms in an expansion
in powers of the density of scatterers in the point scatterer limit and it is considered to be
the correct result under those conditions. These previous results ignore any further two-point
correlations between the scatterer’s positions except for the non-superposition condition. In
this paper, it is shown how to incorporate an arbitrary correlation function into the Fikioris–
Waterman secular equation. In section 2, the result of Fikioris and Waterman is presented
without derivation and the notation is established. In section 3, the secular equation for
the effective wave number is extended to accommodate arbitrary pair correlations between
the scatterer’s positions. In section 4, an implicit equation for the effective wave number is
derived and it is shown how an iterative method can be used to obtain this wave number. In
section 5, an expansion of the effective wave number is obtained up to second-order terms in the
density of scatterers. In the point scatterer limit this expression yields the Lloyd–Berry wave
number. Finally, section 6 presents a summary of this paper including additional comments
and conclusions.

2. The Fikioris–Waterman secular equation

The notation in the article by Fikioris and Waterman will be followed in this section. These
authors derive the following equation, equation (2.12) in their article [1], for the amplitude of a
coherent wave excited by the normally incident plane wave in the half-space (z � 0) occupied
by the identical scattering spheres with density n0:

A0
n = n0

∞∑
j=0

(2j + 1)BjA
0
j

∞∑
p=0

(−i)pa(0, j |0, n|p)dp(k,K|b). (1)

In the above equation, j , n and p are partial-wave indices, the scattering amplitude of each
sphere is written as

f (θ) = 1

ik

∞∑
j=0

(2j + 1)BjPj (cos(θ)), (2)

and the coefficients a(0, j |0, n|p) are defined by

Pj (x)Pn(x) =
∞∑

p=0

a(0, j |0, n|p)Pp(x),

a(0, j |0, n|p) = 2p + 1

2

∫ 1

−1
dx Pj (x)Pn(x)Pp(x).

(3)

The quantity dp(k,K|b), a consequence of imposing the non-superposition correlation
H(|ri − rj | − b) (H (x) is the Heaviside step function, b = 2a is the diameter of the spheres)
between scatterers at ri and rj, can be written as

dp(k,K|b) = − 4πb2

K2 − k2
ip[kh′

p(kb)jp(Kb) − Khp(kb)j ′
p(Kb)], (4)

where hp(kb) is the spherical Hankel function of the first kind and K is the effective wave
number in the half-space occupied by the scatterers.

The above equation for A0 (equation (1)) is a linear, homogeneous, algebraic equation of
the form [I − M(K)] A0 = 0. A solution A0 �= 0 can only exist for the particular value of
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K that makes the matrix I − M(K) singular. The (infinite-dimensional) matrix M(K) will be
written as

M(K)n,j = 4πn0

ik(K2 − k2)
(2j + 1)Bj

∞∑
p=0

a(0, j |0, n|p)Jp(k,K|b), (5)

where

Jp(k,K|b) = −ikb2[kh′
p(kb)jp(Kb) − Khp(kb)j ′

p(Kb)], Jp(k, k|b) = 1. (6)

Thus the effective wave number is obtained as the value of K such that the Fikioris–Waterman
secular equation is satisfied:

det(I − M(K)) = 0. (7)

3. Extension to arbitrary pair correlations

In this section, the Fikioris–Waterman equation (equation (1)) will be extended to the case of an
arbitrary pair correlation function between the positions of any two scatterers in the ensemble.
As is well known a random distribution of identical spheres will exhibit correlations among
the positions of the spheres, which become stronger as the density increases. The estimation
of those correlations is entirely analogous to the computation of initial-state correlations in
the classical–mechanical models of fluids (see [7]). For the pair correlation, g2(|r − r′|), one
has the following properties:

g2(r)−−−−−→
r→∞ 0 and g2(r) = 1 for r < b, b = sphere diameter. (8)

The condition g2(r → ∞) = 0 obviously indicates the expectation that the positions of widely
separated scatterers are not correlated while the condition g2(r) = 1 enforces the physical
requirement that two scatterers should not overlap. A simple approximation to g2(|r − r′|) is

1 − g2(|r − r′|) = H(|r − r′| − b), (9)

which is equivalent to the Fikioris–Waterman hole correction. The hole correction is
responsible for the appearance of the quantity Jp(k,K|b) on the right-hand side of
equation (4). From the derivation of equation (1) given in [1] one finds that Jp(k,K|b)

can be written as

Jp(k,K|b) = −ik
∫ ∞

0
drH(r − b)∂r{r2[hp(kr)∂rjp(Kr) − jp(Kr)∂rhp(kr)]}. (10)

Thus the generalization for an arbitrary pair correlation is

Jp(k,K|b) = −ik
∫ ∞

0
dr[1 − g2(r)]∂r{r2[hp(kr)∂rjp(Kr) − jp(Kr)∂rhp(kr)]}. (11)

Using the property g2 (r) = 1 for r < b one can write

Jp(k,K|b) = ikb2[1 − g2(b
+)][hp(kr)∂rjp(Kr) − jp(Kr)∂rhp(kr)]r=b

− ik
∫ ∞

b+
r2 dr[∂rg2(r)][hp(kr)∂rjp(Kr) − jp(Kr)∂rhp(kr)]. (12)

By b+ it is meant that the value of g2(r) at r = b is reached from the region r > b.
Therefore, for the remainder of this paper, the matrix M(K) is still defined by equation

(5) but Jp(k,K|b) is given by equation (11) or its equivalent equation (12) and one still
has Jp(k, k|b) = 1 since the expression involving spherical Bessel and Hankel functions in
equation (12) reduces to the Wronskian when K = k.
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4. The implicit equation for the effective wave number

Instead of attempting to solve the infinite-dimensional secular equation det(I − M(K)) = 0
the condition A0 �= 0 will be used to obtain an implicit equation for the effective wave number
K. Now, with Jp(k, k|b) = 1, one can write M(K) = M0(K) + R(K) where

M0(K)n,j = 4πn0

ik(K2 − k2)
(2j + 1)Bj

∞∑
p=0

a(0, j |0, n|p) = 4πn0

ik(K2 − k2)
(2j + 1)Bj , (13)

since
∑∞

p=0 a(0, j |0, n|p) =Pj (1)Pn(1) = 1. For R(K) one has

R(K)n,j = 4πn0

ik(K2 − k2)
(2j + 1)BjS(K)n,j ,

S(K)n,j =
∞∑

p=0

a(0, j |0, n|p)[Jp(k,K|b) − 1].
(14)

One notices that K2 − k2 and Jp(k,K|b) − 1 are of order n0. Thus, to lowest order, M0(K)
is independent of n0 and R(K) is of order n0. From the equation [I − M(K)]A0 = 0 one can
extract an implicit equation for the effective wave number. First one observes that

A0
n = [M(K)A0]n ⇒ A0

n = 4πn0

ik(K2 − k2)
U

∑
j

(
I

I − R(K)

)
n,j

, (15)

where

U =
∑

j

(2j + 1)BjA
0
j . (16)

Entering the expression for A0
j from equation (15) into the definition of U in equation (16) one

obtains

U = 4πn0

ik(K2 − k2)
U

∑
l

∑
j

(2j + 1)Bj

(
I

I − R(K)

)
j,l

, (17)

demanding that U �= 0 leads to

K2 = k2 + 4πn0F(K), (18)

with

F(K) = 1

ik

∑
j

(2j + 1)Bj

∑
l

(
I

I − R(K)

)
j,l

. (19)

Equation (18) is an implicit equation for the effective wave number that can be solved
iteratively. The effective wave number can be obtained by setting up the following iteration
scheme:

K2
m+1 = k2 + 4πn0F(Km), K2

0 = k2 + 4πn0f (0). (20)

Note that from equation (19) it follows that one needs only the sum Yj (K) =∑
l [I/(I − R(K))]j,l . Thus, in order to obtain F(K) with a given K, instead of having

to compute an inverse matrix one just has to solve a linear algebraic equation for Yj (K):
∞∑

n=0

[I − R(K)]j,nYn(K) = 1, F (K) = 1

ik

∞∑
j=0

(2j + 1)BjYj (K). (21)
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5. Density expansion for the effective wave number

In this section, a density expansion for the square of the effective wave number will be obtained
explicitly to order n2

0. In the point scatterer limit, this expression is identical to that obtained
by Lloyd and Berry [6]. The expression for the effective wave number to order n2

0 is obtained
by noticing that the coupling matrix in the equation for Yj (K) (equation (21)) is of order n0

and so Yj (K) = 1 + O(n0). To determine Yj (K) to first order in n0 one observes that

lim
K→k

4πn0

ik(K2 − k2)
Sj,n(K) = 2πn0

ik2
[∂KSj,n(K)]K=k, (22)

since K = k + O(n0) and Sj,n(k) = 0. Therefore

K2 = k2 + 4πn0f (0) − 2

k

(
2πn0

k

)2 ∑
j

(2j + 1)Bj

∞∑
n=0

(2n + 1)Bn[∂KSj,n(K)]K=k + O
(
n3

0

)
.

(23)

Now,

[∂KSj,n(K)]K=k =
∫ 1

−1
dx Pj (x)Pn(x)

∞∑
p=0

2p + 1

2
Pp(x)[∂KJp(k,K|b)]K=k, (24)

and one obtains
∑

j

(2j + 1)Bj

∞∑
n=0

(2n + 1)Bn[∂KSj,n(K)]K=k = −k

2

∫ 1

−1
dx f (arccos(x))2V (x), (25)

with

V (x) ≡ k

∞∑
p=0

(2p + 1)Pp(x)[∂KJp(k,K|b)]K=k. (26)

Thus, combining equations (23)–(26) yields

K2 = k2 + 4πn0f (0) +

(
2πn0

k

)2 ∫ 1

−1
dx f (arccos(x))2V (x) + O

(
n3

0

)
. (27)

The result in equation (27) is the second order in density expression for the effective wave
number with finite-size spheres with pair-correlation g2 (r). With Jp(k,K|b) given by
equation (12) one obtains

∂KJp(k,K|b)K=k = −ib[1 − g2(b
+)]Bp(kb) + i

∫ ∞

b+
r dr[∂rg2(r)]Bp(kr), (28)

where

Bp(x) ≡ x2j ′
p(x)h′

p(x) + xhp(x)j ′
p(x) + (x2 − p(p + 1))hp(x)jp(x). (29)

The Lloyd–Berry effective wave number is obtained from equations (26) and (27) in the limit
of uncorrelated point scatterers, that is, by taking g2(|r − r′|) = 1 − H(|r − r′| − b) and
then the limit b → 0+ of equation (12) and using the result in equation (27). In this limit,
g2(|r − r′|) = 0 for |r − r′| > 0 and Jp(k,K|b) is given by equation (6). One finds that

Jp(k,K|0) =
(

K

k

)p

and ∂KJp(k,K|0) = p

k

(
K

k

)p−1

. (30)

Therefore, in the point scatterer limit,

V (x) =
∞∑

p=0

(2p + 1)pPp(x) = (
2∂2

z + 3∂z

) 1√
1 − 2xz + z2

∣∣∣∣
z=1

, (31)
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where the generating function for Legendre polynomials was used to obtain the last expression
in equation (31). The last integral in equation (27), with F(x) = f (arccos(x))2, is of the form

∫ 1

−1
dx V (x)F(x) =

{(
2∂2

z + 3∂z

) ∫ 1

−1
dx

1√
1 − 2xz + z2

F(x)

}
z=1

. (32)

Integrating by parts on the right-hand side of equation (32) one obtains

∫ 1

−1
dx V (x)F(x) = F(−1) − F(1) +

∫ 1

−1
dx

√
2

1 − x
∂xF(x). (33)

In terms of θ = arccos(x) one has
∫ 1

−1
dx V (x)F(x) =

∫ π

0
sin(θ) dθ [V (cos(θ))F(cos(θ))]

= F(cos(θ))|π0 −
∫ π

0
dθ

∂θF(cos(θ))√
sin(θ/2)

. (34)

Therefore, one obtains the Lloyd–Berry [6] expression for the effective wave number to second
order in the density of scatterers in the point scatterer limit:

K2 = k2 + 4πn0f (0) +

(
2πn0

k

)2 {
f (π)2 − f (0)2 −

∫ π

0
dθ

∂θ [f (θ)2]√
sin(θ/2)

}
+ O

(
n3

0

)
. (35)

6. Summary

The main point of this paper was to derive the implicit equation for the effective wave
number including pair correlations among the scatterer’s positions and obtain its solution to
second order in the density of scatterers. This is an explicit expression that is amenable to
a relatively simple numerical calculation and thus applicable to the analysis of experiments
involving transmission through a region occupied by a random distribution of scatterers, for
example, transmission through a plane slab containing such scatterers. From the point of
view of applications it is worthwhile to observe that it avoids having to compute numerically
a very large (strictly speaking infinite-dimensional) determinant and then finding roots of the
associated secular equation. For an example where this is done (truncating the dimensions
of the determinant) see the work of Tsang et al in [8]. This reference also has a good
discussion of the need to incorporate pair correlations when using the QCA at very high
densities. The implicit wave-number equation (equation (18)) and its second order in density
solution (equation (27)) are new results. Reproducing the result of Lloyd and Berry [6] from
the general second-order solution indicates the correctness of the result, at least to second
order in the density of scatterers. There are many published works on multiple scattering. A
thorough review of those works would far exceed the scope of this paper. An encyclopedic
review of wave propagation in random media and multiple scattering can be found in a book
by Ishimaru [9]. A very useful review of multiple scattering methods in acoustics is found in
the review article by Tourin et al [10].
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